With cedram.org
Annales Mathématiques
Blaise Pascal
Search for an article
Search within the site
Table of contents for this issue | Previous article
José Ignacio Cogolludo-Agustín
Braid Monodromy of Algebraic Curves
Annales mathématiques Blaise Pascal, 18 no. 1 (2011), p. 141-209, doi: 10.5802/ambp.295
Article PDF | Reviews MR 2830090 | Zbl pre05903955 | 1 citation in Cedram
Class. Math.: 32S50, 14D05, 14H30, 14H50, 32S05, 57M10
Keywords: Fundamental group, algebraic variety, quasi-projective group, pencil of hypersurfaces

Résumé - Abstract

These are the notes from a one-week course on Braid Monodromy of Algebraic Curves given at the Université de Pau et des Pays de l’Adour during the Première Ecole Franco-Espagnole: Groupes de tresses et topologie en petite dimension in October 2009.

This is intended to be an introductory survey through which we hope we can briefly outline the power of the concept monodromy as a common area for group theory, algebraic geometry, and topology of projective curves.

The main classical results are stated in §2, where the Zariski–van Kampen method to compute a presentation for the fundamental group of the complement to projective plane curves is presented. In §1 these results are prefaced with a review of basic concepts like fundamental groups, locally trivial fibrations, branched and unbranched coverings and a first peek at monodromy. Descriptions of the main motivations that have lead mathematicians to study these objects are included throughout this first chapter. Finally, additional tools and further results that are direct applications of braid monodromy will be considered in §3.

While not all proofs are included, we do provide either originals or simplified versions of those that are relevant in the sense that they exhibit the techniques that are most used in this context and lead to a better understanding of the main concepts discussed in this survey.

Nothing here is hence original, other than an attempt to bring together different results and points of view.

It goes without saying that this is not the first, and hopefully not the last, survey on the topic. For other approaches to braid monodromy we refer to the following beautifully-written papers [73, 20, 6].

We finally wish to thank the organizers and the referee for their patience and understanding in the process of writing and correcting these notes.

Bibliography

[1] Harold Abelson. Topologically distinct conjugate varieties with finite fundamental group. Topology, 13:161-176, 1974. Article |  MR 349679 |  Zbl 0279.14001
[2] Enrique Artal Bartolo, Jorge Carmona Ruber and José Ignacio Cogolludo Agustín. Braid monodromy and topology of plane curves. Duke Math. J., 118(2):261-278, 2003. Article |  MR 1980995 |  Zbl 1058.14053
[3] Enrique Artal Bartolo, Jorge Carmona Ruber, José Ignacio Cogolludo-Agustín and Miguel Marco Buzunáriz. Topology and combinatorics of real line arrangements. Compos. Math., 141(6):1578-1588, 2005. Article |  MR 2188450 |  Zbl 1085.32012
[4] Enrique Artal Bartolo, Jorge Carmona Ruber, José Ignacio Cogolludo Agustín and Miguel Ángel Marco Buzunáriz, Invariants of combinatorial line arrangements and Rybnikov’s example, Singularity theory and its applications, Adv. Stud. Pure Math. 43, Math. Soc. Japan, 2006, p. 1–34  MR 2313406
[5] Enrique Artal Bartolo, José Ignacio Cogolludo and Hiro-o Tokunaga. Nodal degenerations of plane curves and Galois covers. Geom. Dedicata, 121:129-142, 2006. Article |  MR 2276239 |  Zbl 1103.14016
[6] Enrique Artal Bartolo, José Ignacio Cogolludo and Hiro-o Tokunaga, A survey on Zariski pairs, Algebraic geometry in East Asia—Hanoi 2005, Adv. Stud. Pure Math. 50, Math. Soc. Japan, 2008, p. 1–100  MR 2409555
[7] E. Artin. Theory of braids. Ann. of Math. (2), 48:101-126, 1947. Article |  MR 19087 |  Zbl 0030.17703
[8] William A. Arvola. Complexified real arrangements of hyperplanes. Manuscripta Math., 71(3):295-306, 1991. Article |  MR 1103735 |  Zbl 0731.57011
[9] William A. Arvola. The fundamental group of the complement of an arrangement of complex hyperplanes. Topology, 31(4):757-765, 1992. Article |  MR 1191377 |  Zbl 0772.57001
[10] T. Ben-Itzhak and M. Teicher. Properties of Hurwitz equivalence in the braid group of order $n$. J. Algebra, 264(1):15-25, 2003. Article |  MR 1980683 |  Zbl 1054.20017
[11] David Bessis. Variations on Van Kampen’s method. J. Math. Sci. (N. Y.), 128(4):3142-3150, 2005. Article |  MR 2171593 |  Zbl 1121.57002
[12] Joan S. Birman. Mapping class groups and their relationship to braid groups. Comm. Pure Appl. Math., 22:213-238, 1969. Article |  MR 243519 |  Zbl 0167.21503
[13] Ronald Brown. Topology and groupoids. BookSurge, LLC, Charleston, SC, 2006  MR 2273730 |  Zbl 1093.55001
[14] J. Carmona Ruber, Monodromía de trenzas de curvas algebraicas planas, Ph. D. Thesis, Universidad de Zaragoza, 2003
[15] F. Catanese. On a problem of Chisini. Duke Math. J., 53(1):33-42, 1986. Article |  MR 835794 |  Zbl 0609.14031
[16] D. Cheniot. Une démonstration du théorème de Zariski sur les sections hyperplanes d’une hypersurface projective et du théorème de Van Kampen sur le groupe fondamental du complémentaire d’une courbe projective plane. Compositio Math., 27:141-158, 1973. Numdam |  MR 366922 |  Zbl 0294.14010
[17] D. Chéniot and A. Libgober. Zariski-van Kampen theorem for higher-homotopy groups. J. Inst. Math. Jussieu, 2(4):495-527, 2003. Article |  MR 2006797 |  Zbl 1081.14505
[18] Oscar Chisini. Una suggestiva rappresentazione reale per le curve algebriche piane. Ist. Lombardo, Rend., II. Ser., 66):1141-1155, 1933.  Zbl 0008.22001
[19] Oscar Chisini. Sulla identità birazionale di due funzioni algebriche di più variabili, dotate di una medesima varietà di diramazione. Ist. Lombardo Sci. Lett. Rend Cl. Sci. Mat. Nat. (3), 11(80):3-6 (1949), 1947.  MR 34054 |  Zbl 0041.28002
[20] Daniel C. Cohen and Alexander I. Suciu. The braid monodromy of plane algebraic curves and hyperplane arrangements. Comment. Math. Helv., 72(2):285-315, 1997. Article |  MR 1470093 |  Zbl 0959.52018
[21] R. Cordovil and J. L. Fachada. Braid monodromy groups of wiring diagrams. Boll. Un. Mat. Ital. B (7), 9(2):399-416, 1995.  MR 1333969 |  Zbl 0868.14028
[22] Raul Cordovil. The fundamental group of the complement of the complexification of a real arrangement of hyperplanes. Adv. in Appl. Math., 21(3):481-498, 1998. Article |  MR 1641238 |  Zbl 0921.55004
[23] H. S. M. Coxeter and W. O. J. Moser. Generators and relations for discrete groups, volume 14 of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer-Verlag, 1980  MR 562913 |  Zbl 0077.02801
[24] Pierre Deligne, Le groupe fondamental du complément d’une courbe plane n’ayant que des points doubles ordinaires est abélien (d’après W. Fulton), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math. 842, Springer, 1981, p. 1–10 Numdam |  MR 636513 |  Zbl 0478.14008
[25] Alexandru Dimca. Singularities and topology of hypersurfaces. Springer-Verlag, 1992  MR 1194180 |  Zbl 0753.57001
[26] Igor Dolgachev and Anatoly Libgober, On the fundamental group of the complement to a discriminant variety, Algebraic geometry (Chicago, Ill., 1980), Lecture Notes in Math. 862, Springer, 1981, p. 1–25  MR 644816 |  Zbl 0475.14011
[27] M. J. Dunwoody. The homotopy type of a two-dimensional complex. Bull. London Math. Soc., 8(3):282-285, 1976. Article |  MR 425943 |  Zbl 0341.55008
[28] Charles Ehresmann. Sur les espaces fibrés différentiables. C. R. Acad. Sci. Paris, 224:1611-1612, 1947.  MR 20774 |  Zbl 0029.42001
[29] Federigo Enriques. Sulla costruzione delle funzioni algebriche di due variabili possedenti una data curva di diramazione. Ann. Mat. Pura Appl., 1(1):185-198, 1924. Article |  MR 1553061 |  JFM 50.0674.01
[30] Michael Falk. The minimal model of the complement of an arrangement of hyperplanes. Trans. Amer. Math. Soc., 309(2):543-556, 1988. Article |  MR 929668 |  Zbl 0707.57001
[31] Michael Falk. Homotopy types of line arrangements. Invent. Math., 111(1):139-150, 1993. Article |  MR 1193601 |  Zbl 0772.52011
[32] William Fulton. On the fundamental group of the complement of a node curve. Ann. of Math. (2), 111(2):407-409, 1980. Article |  MR 569076 |  Zbl 0406.14008
[33] Mark Goresky and Robert MacPherson. Stratified Morse theory, volume 14 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, 1988  MR 932724
[34] Gert-Martin Greuel, Christoph Lossen and Eugenii Shustin. Geometry of families of nodal curves on the blown-up projective plane. Trans. Amer. Math. Soc., 350(1):251-274, 1998. Article |  MR 1443875 |  Zbl 0889.14010
[35] Gert-Martin Greuel, Christoph Lossen and Eugenii Shustin. Plane curves of minimal degree with prescribed singularities. Invent. Math., 133(3):539-580, 1998. Article |  MR 1645074 |  Zbl 0924.14013
[36] Gert-Martin Greuel, Christoph Lossen and Eugenii Shustin. The variety of plane curves with ordinary singularities is not irreducible. Internat. Math. Res. Notices:543-550, 2001. Article |  MR 1836729 |  Zbl 0982.14018
[37] A Grothendieck and M. Raynaud. Revêtements étales et groupe fondamental (SGA 1). Société Mathématique de France, 2003  MR 2017446
[38] Helmut A. Hamm, Lefschetz theorems for singular varieties, Singularities, Part 1 (Arcata, Calif., 1981), Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, p. 547–557  MR 713091 |  Zbl 0525.14011
[39] Joe Harris. On the Severi problem. Invent. Math., 84(3):445-461, 1986. Article |  MR 837522 |  Zbl 0596.14017
[40] Eriko Hironaka. Abelian coverings of the complex projective plane branched along configurations of real lines. Mem. Amer. Math. Soc., 105(502), 1993.  MR 1164128 |  Zbl 0788.14054
[41] Egbert R. van Kampen. On the connection between the fundamental groups of some related spaces.. Am. J. Math., 55:261-267, 1933.  Zbl 0006.41503
[42] Egbert R. Van Kampen. On the Fundamental Group of an Algebraic Curve. Amer. J. Math., 55(1-4):255-260, 1933. Article |  MR 1506962 |  Zbl 0006.41502
[43] Viatcheslav Kharlamov and Viktor Kulikov. Diffeomorphisms, isotopies, and braid monodromy factorizations of plane cuspidal curves. C. R. Acad. Sci. Paris Sér. I Math., 333(9):855-859, 2001. Article |  MR 1873224 |  Zbl 1066.14050
[44] Valentine S. Kulikov, On a conjecture of Chisini for coverings of the plane with A-D-E-singularities, Real and complex singularities, Lecture Notes in Pure and Appl. Math. 232, Dekker, 2003, p. 175–188  MR 2075064 |  Zbl 1081.14050
[45] Vik. S. Kulikov. On Chisini’s conjecture. Izv. Ross. Akad. Nauk Ser. Mat., 63(6):83-116, 1999. Article |  MR 1748562 |  Zbl 0962.14005
[46] Vik. S. Kulikov. On Chisini’s conjecture. II. Izv. Ross. Akad. Nauk Ser. Mat., 72(5):63-76, 2008. Article |  MR 2473772 |  Zbl 1153.14012
[47] Vik. S. Kulikov and V. M. Kharlamov. On braid monodromy factorizations. Izv. Ross. Akad. Nauk Ser. Mat., 67(3):79-118, 2003. Article |  MR 1992194 |  Zbl 1076.14022
[48] Vik. S. Kulikov and M. Taĭkher. Braid monodromy factorizations and diffeomorphism types. Izv. Ross. Akad. Nauk Ser. Mat., 64(2):89-120, 2000. Article |  MR 1770673 |  Zbl 1004.14005
[49] Klaus Lamotke. The topology of complex projective varieties after S. Lefschetz. Topology, 20(1):15-51, 1981. Article |  MR 592569 |  Zbl 0445.14010
[50] A. Libgober. On the homotopy type of the complement to plane algebraic curves. J. Reine Angew. Math., 367:103-114, 1986. Article |  MR 839126 |  Zbl 0576.14019
[51] A. Libgober. Homotopy groups of the complements to singular hypersurfaces. II. Ann. of Math. (2), 139(1):117-144, 1994. Article |  MR 1259366 |  Zbl 0815.57017
[52] Anatoly Libgober, Homotopy groups of complements to ample divisors, Singularity theory and its applications, Adv. Stud. Pure Math. 43, Math. Soc. Japan, 2006, p. 179–204  MR 2325138 |  Zbl 1134.14014
[53] Saunders MacLane. Some Interpretations of Abstract Linear Dependence in Terms of Projective Geometry. Amer. J. Math., 58(1):236-240, 1936. Article |  MR 1507146 |  Zbl 0013.19503
[54] Sandro Manfredini and Roberto Pignatelli. Chisini’s conjecture for curves with singularities of type $x^n=y^m$. Michigan Math. J., 50(2):287-312, 2002. Article |  MR 1914066 |  Zbl 1065.14045
[55] John Milnor. Singular points of complex hypersurfaces. Princeton University Press, 1968  MR 239612 |  Zbl 0184.48405
[56] B. Moishezon, The arithmetic of braids and a statement of Chisini, Geometric topology (Haifa, 1992), Contemp. Math. 164, Amer. Math. Soc., 1994, p. 151–175  MR 1282761 |  Zbl 0837.14020
[57] B. G. Moishezon, Stable branch curves and braid monodromies, Algebraic geometry (Chicago, Ill., 1980), Lecture Notes in Math. 862, Springer, 1981, p. 107–192  MR 644819 |  Zbl 0476.14005
[58] James R. Munkres. Topology: a first course. Prentice-Hall Inc., 1975  MR 464128 |  Zbl 0951.54001
[59] Makoto Namba. Branched coverings and algebraic functions, volume 161 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, 1987  MR 933557 |  Zbl 0706.14017
[60] S. Yu. Nemirovskiĭ. On Kulikov’s theorem on the Chisini conjecture. Izv. Ross. Akad. Nauk Ser. Mat., 65(1):77-80, 2001. Article |  MR 1829404 |  Zbl 1012.14005
[61] Madhav V. Nori. Zariski’s conjecture and related problems. Ann. Sci. École Norm. Sup. (4), 16(2):305-344, 1983. Numdam |  MR 732347 |  Zbl 0527.14016
[62] S. Yu. Orevkov. Realizability of a braid monodromy by an algebraic function in a disk. C. R. Acad. Sci. Paris Sér. I Math., 326(7):867-871, 1998. Article |  MR 1648548 |  Zbl 0922.32020
[63] Ziv Ran. Families of plane curves and their limits: Enriques’ conjecture and beyond. Ann. of Math. (2), 130(1):121-157, 1989. Article |  MR 1005609 |  Zbl 0704.14018
[64] Richard Randell. The fundamental group of the complement of a union of complex hyperplanes. Invent. Math., 69(1):103-108, 1982. Article |  MR 671654 |  Zbl 0505.14017
[65] Richard Randell, Milnor fibers and Alexander polynomials of plane curves, Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, p. 415–419  MR 713266 |  Zbl 0524.14027
[66] Richard Randell. Correction: “The fundamental group of the complement of a union of complex hyperplanes” [Invent. Math. 69 (1982), no. 1, 103–108; MR0671654 (84a:32016)]. Invent. Math., 80(3):467-468, 1985. Article |  MR 671654 |  Zbl 0596.14014
[67] G. Rybnikov. On the fundamental group of the complement of a complex hyperplane arrangement. Preprint available at arXiv:math.AG/9805056
[68] Mario Salvetti. Arrangements of lines and monodromy of plane curves. Compositio Math., 68(1):103-122, 1988. Numdam |  MR 962507 |  Zbl 0661.14038
[69] Mario Salvetti. On the homotopy type of the complement to an arrangement of lines in ${\bf C}^2$. Boll. Un. Mat. Ital. A (7), 2(3):337-344, 1988.  MR 966915 |  Zbl 0668.57002
[70] H. Seifert. Konstruktion dreidimensionaler geschlossener Räume. Berichte über d. Verhandl. d. Sächs. Ges. d. Wiss., Math.-Phys. Kl., 83:26-66, 1931.  Zbl 0002.16001
[71] Jean-Pierre Serre. Exemples de variétés projectives conjuguées non homéomorphes. C. R. Acad. Sci. Paris, 258:4194-4196, 1964.  MR 166197 |  Zbl 0117.38003
[72] Francesco Severi. Vorlesungen über algebraische Geometrie: Geometrie auf einer Kurve, Riemannsche Flächen, Abelsche Integrale. Johnson Reprint Corp., 1968  MR 245574
[73] I. Shimada. Lecture on Zariski Van-Kampen theorem. Lectures Notes, 2007
[74] Eugenii Shustin. Smoothness and irreducibility of families of plane algebraic curves with ordinary singularities. In Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., pages 393-416. Bar-Ilan Univ., 1996  MR 1360516 |  Zbl 0857.14015
[75] V. A. Vassiliev. Introduction to topology, volume 14 of Student Mathematical Library. American Mathematical Society, 2001  MR 1816237 |  Zbl 0971.57001
[76] Oscar Zariski. On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve. Amer. J. Math., 51(2):305-328, 1929. Article |  MR 1506719 |  JFM 55.0806.01
[77] Oscar Zariski. On the irregularity of cyclic multiple planes. Ann. of Math. (2), 32(3):485-511, 1931. Article |  MR 1503012 |  Zbl 0001.40301
[78] Oscar Zariski. On the Poincaré Group of Rational Plane Curves. Amer. J. Math., 58(3):607-619, 1936. Article |  MR 1507185 |  Zbl 0014.32801