With cedram.org
Annales Mathématiques
Blaise Pascal
Search for an article
Search within the site
Table of contents for this issue | Previous article | Next article
Hossein Movasati
Quasi-modular forms attached to elliptic curves, I
(Formes quasimodulaires attachées aux courbes elliptiques, I)
Annales mathématiques Blaise Pascal, 19 no. 2 (2012), p. 307-377, doi: 10.5802/ambp.316
Article PDF | Reviews MR 3025138 | Zbl 1264.11031

Résumé - Abstract

In the present text we give a geometric interpretation of quasi-modular forms using moduli of elliptic curves with marked elements in their de Rham cohomologies. In this way differential equations of modular and quasi-modular forms are interpreted as vector fields on such moduli spaces and they can be calculated from the Gauss-Manin connection of the corresponding universal family of elliptic curves. For the full modular group such a differential equation is calculated and it turns out to be the Ramanujan differential equation between Eisenstein series. We also explain the notion of period map constructed from elliptic integrals. This turns out to be the bridge between the algebraic notion of a quasi-modular form and the one as a holomorphic function on the upper half plane. In this way we also get another interpretation, essentially due to Halphen, of the Ramanujan differential equation in terms of hypergeometric functions. The interpretation of quasi-modular forms as sections of jet bundles and some related enumerative problems are also presented.

Bibliography

[1] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko. Singularities of differentiable maps. Monodromy and asymptotics of integrals Vol. II, volume 83 of Monographs in Mathematics. Birkhäuser Boston Inc., 1988  MR 966191
[2] J. W. S. Cassels. Diophantine equations with special reference to elliptic curves. J. London Math. Soc., 41:193-291, 1966. Article |  MR 199150 |  Zbl 0138.27002
[3] G. Darboux. Sur la théorie des coordonnées curvilignes et les systémes orthogonaux. Ann Ecole Normale Supérieure, 7:101-150, 1878.  MR 1508661 |  JFM 10.0500.04
[4] Pierre Deligne, James S. Milne, Arthur Ogus and Kuang-yen Shih. Hodge cycles, motives, and Shimura varieties, volume 900 of Lecture Notes in Mathematics. Springer-Verlag, 1982  MR 654325 |  Zbl 0465.00010
[5] Fred Diamond and Jerry Shurman. A first course in modular forms, volume 228 of Graduate Texts in Mathematics. Springer-Verlag, 2005  MR 2112196 |  Zbl 1062.11022
[6] Robbert Dijkgraaf, Mirror symmetry and elliptic curves, The moduli space of curves (Texel Island, 1994), Progr. Math. 129, Birkhäuser Boston, 1995, p. 149–163  MR 1363055 |  Zbl 0913.14007
[7] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, 1995  MR 1322960 |  Zbl 0819.13001
[8] Terry Gannon. Moonshine beyond the Monster. Cambridge University Press, 2006 Article |  MR 2257727 |  Zbl 1146.11026
[9] Gerard van der Geer, Siegel modular forms and their applications, The 1-2-3 of modular forms, Universitext, Springer, 2008, p. 181–245 Article |  MR 2409679 |  Zbl pre05808164
[10] Benedict H. Gross. On an identity of Chowla and Selberg. J. Number Theory, 11(3 S. Chowla Anniversary Issue):344-348, 1979. Article |  MR 544262 |  Zbl 0418.14024
[11] Alexander Grothendieck. On the de Rham cohomology of algebraic varieties. Inst. Hautes Études Sci. Publ. Math.:95-103, 1966. Numdam |  MR 199194 |  Zbl 0145.17602
[12] G. H. Halphen. Sur une systéme d’équations différetielles. C. R. Acad. Sci Paris, 92:1101-1103, 1881.  JFM 13.0289.02
[13] G. H. Halphen. Traité des fonctions elliptiques et de leurs applications. Gauthier-Villars, 1886  JFM 22.0447.01
[14] Robin Hartshorne. Algebraic geometry. Springer-Verlag, 1977  MR 463157 |  Zbl 0531.14001
[15] Haruzo Hida. Geometric modular forms and elliptic curves. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012  MR 2894984 |  Zbl pre05984500
[16] Jerome W. Hoffman. Topics in elliptic curves and modular forms. Preprint available in the author’s homepage, 2010
[17] Masanobu Kaneko and Don Zagier, A generalized Jacobi theta function and quasimodular forms, The moduli space of curves (Texel Island, 1994), Progr. Math. 129, Birkhäuser Boston, 1995, p. 165–172  MR 1363056 |  Zbl 0892.11015
[18] Nicholas M. Katz. $p$-adic interpolation of real analytic Eisenstein series. Ann. of Math. (2), 104(3):459-571, 1976. Article |  MR 506271 |  Zbl 0354.14007
[19] Kiran S. Kedlaya, $p$-adic cohomology: from theory to practice, $p$-adic geometry, Univ. Lecture Ser. 45, Amer. Math. Soc., 2008, p. 175–203  MR 2482348 |  Zbl 1153.14016
[20] Klaus Lamotke. The topology of complex projective varieties after S. Lefschetz. Topology, 20(1):15-51, 1981. Article |  MR 592569 |  Zbl 0445.14010
[21] Min Ho Lee. Quasimodular forms and vector bundles. Bull. Aust. Math. Soc., 80(3):402-412, 2009. Article |  MR 2569915 |  Zbl 1225.11051
[22] François Martin and Emmanuel Royer, Formes modulaires et périodes, Formes modulaires et transcendance, Sémin. Congr. 12, Soc. Math. France, 2005, p. 1–117  MR 2186573 |  Zbl 1104.11017
[23] Hossein Movasati. On differential modular forms and some analytic relations between Eisenstein series. Ramanujan J., 17(1):53-76, 2008. Article |  MR 2439525 |  Zbl 1244.11041
[24] Hossein Movasati. Eisenstein type series for Calabi-Yau varieties. Nuclear Phys. B, 847(2):460-484, 2011. Article |  MR 2774983 |  Zbl 1208.81223
[25] Hossein Movasati. Multiple integrals and modular differential equations. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2011  MR 2827610 |  Zbl pre05983397
[26] . Introduction to algebraic independence theory, volume 1752 of Lecture Notes in Mathematics. Springer-Verlag, 2001  MR 1837822
[27] Yousuke Ohyama. Differential relations of theta functions. Osaka J. Math., 32(2):431-450, 1995. Article |  MR 1355752 |  Zbl 0864.34001
[28] Yousuke Ohyama. Differential equations for modular forms of level three. Funkcial. Ekvac., 44(3):377-389, 2001.  MR 1893938 |  Zbl 1145.11310
[29] Kyoji Saito, Primitive automorphic forms, Mathematics unlimited—2001 and beyond, Springer, 2001, p. 1003–1018  MR 1852200 |  Zbl 1047.11513
[30] Takao Sasai. Monodromy representations of homology of certain elliptic surfaces. J. Math. Soc. Japan, 26:296-305, 1974. Article |  MR 346200 |  Zbl 0273.14017
[31] Ernst S. Selmer. The Diophantine equation $ax^3+by^3+cz^3=0$. Acta Math., 85:203-362 (1 plate), 1951. Article |  MR 41871 |  Zbl 0042.26905
[32] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, 2009  MR 2514094 |  Zbl 1194.11005
[33] John Tate. Residues of differentials on curves. Ann. Sci. École Norm. Sup. (4), 1:149-159, 1968. Numdam |  MR 227171 |  Zbl 0159.22702
[34] Claire Voisin. Hodge theory and complex algebraic geometry. I, volume 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2002  MR 1967689 |  Zbl 1005.14002
[35] W. Zudilin. The hypergeometric equation and Ramanujan functions. Ramanujan J., 7(4):435-447, 2003. Article |  MR 2040982 |  Zbl 1072.11052