With cedram.org
Annales Mathématiques
Blaise Pascal
Search for an article
Search within the site
Table of contents for this issue | Previous article | Next article
Christian Maire; Cam McLeman
On $p^2$-Ranks in the Class Field Tower Problem
($p^2$-rangs et $p$-tours de Hilbert)
Annales mathématiques Blaise Pascal, 21 no. 2 (2014), p. 57-68, doi: 10.5802/ambp.342
Article PDF | Reviews MR 3322615
Class. Math.: 11R29, 11R34, 11R37
Keywords: Hilbert class field towers

Résumé - Abstract

Much recent progress in the 2-class field tower problem revolves around demonstrating infinite such towers for fields – in particular, quadratic fields – whose class groups have large 4-ranks. Generalizing to all primes, we use Golod-Safarevic-type inequalities to analyse the source of the $p^2$-rank of the class group as a quantity of relevance in the $p$-class field tower problem. We also make significant partial progress toward demonstrating that all real quadratic number fields whose class groups have a 2-rank of 5 must have an infinite 2-class field tower.


[1] Elliot Benjamin, Franz Lemmermeyer and C. Snyder. Real quadratic fields with abelian $2$-class field tower. J. Number Theory, 73(2):182-194, 1998. Article |  MR 1658015 |  Zbl 0919.11073
[2] E. S. Golod and I. R. Šafarevič. On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat., 28:261-272, 1964.  MR 161852 |  Zbl 0136.02602
[3] Christian Maire. Un raffinement du théorème de Golod-Safarevic. Nagoya Math. J., 150:1-11, 1998.  MR 1633138 |  Zbl 0923.11158
[4] René Schoof. Infinite class field towers of quadratic fields. J. Reine Angew. Math., 372:209-220, 1986. Article |  MR 863524 |  Zbl 0589.12011
[5] W. A. Stein and al., Sage Mathematics Software (Version 5.11), The Sage Development Team, Y2013, http://www.sagemath.org
[6] B. B. Venkov and H. Koh. The $p$-tower of class fields for an imaginary quadratic field. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 46:5-13, 140, 1974.  MR 382235 |  Zbl 0335.12022