Koszulity of dual braid monoid algebras via cluster complexes
[Koszulité de l’algèbre du monoïde dual de tresses via les complexes d’amas]
Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 2, pp. 141-188.

Le monoïde dual des tresses a été introduit par Bessis dans le contexte des arrangements d’hyperplans complexes. Le but de ce travail est de montrer que la dualité de Koszul fournit une interaction remarquable avec le complexe d’amas introduit par Fomin et Zelevinsky. Premièrement, nous démontrons la koszulité de l’algèbre du monoïde dual des tresses, en donnant explicitement la résolution libre minimale du corps de base. Cette construction utilise des complexes de chaînes définis grâce à la partie positive du complexe d’amas. Deuxièmement, nous examinons diverses propriétés de l’algèbre quadratique duale. Nous démontrons qu’elle est naturellement graduée par le treillis des partitions non-croisées. Nous obtenons une base explicite, indicée par les faces positives du complexe d’amas. Les constantes de structure peuvent être décrites explicitement en termes de l’éventail des amas. Enfin, nous réalisons cette algèbre duale comme un quotient d’une algèbre de Nichols. Ce dernier point se relie aux travaux de Zhang, qui a utilisé cette algèbre pour un calcul d’homologie des fibres de Milnor d’un arrangement de Coxeter.

The dual braid monoid was introduced by Bessis in his work on complex reflection arrangements. The goal of this work is to show that Koszul duality provides a nice interplay between the dual braid monoid and the cluster complex introduced by Fomin and Zelevinsky. Firstly, we prove koszulity of the dual braid monoid algebra, by building explicitly the minimal free resolution of the ground field. This is done by using some chains complexes defined in terms of the positive part of the cluster complex. Secondly, we derive various properties of the quadratic dual algebra. We show that it is naturally graded by the noncrossing partition lattice. We get an explicit basis, naturally indexed by positive faces of the cluster complex. Moreover, we find the structure constants via a geometric rule in terms of the cluster fan. Eventually, we realize this dual algebra as a quotient of a Nichols algebra. This latter fact makes a connection with results of Zhang, who used the same algebra to compute the homology of Milnor fibers of reflection arrangements.

Publié le :
DOI : 10.5802/ambp.420
Matthieu Josuat-Vergès 1 ; Philippe Nadeau 2

1 Université de Paris, CNRS, IRIF (Institut de Recherche en Informatique Fondamentale, UMR8243), France
2 Université Claude Bernard Lyon 1, CNRS, École Centrale de Lyon, INSA Lyon, Universié Jean Monnet, ICJ UMR5208, 69622 Villeurbanne, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2023__30_2_141_0,
     author = {Matthieu Josuat-Verg\`es and Philippe Nadeau},
     title = {Koszulity of dual braid monoid algebras via cluster complexes},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {141--188},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {30},
     number = {2},
     year = {2023},
     doi = {10.5802/ambp.420},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.420/}
}
TY  - JOUR
AU  - Matthieu Josuat-Vergès
AU  - Philippe Nadeau
TI  - Koszulity of dual braid monoid algebras via cluster complexes
JO  - Annales mathématiques Blaise Pascal
PY  - 2023
SP  - 141
EP  - 188
VL  - 30
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.420/
DO  - 10.5802/ambp.420
LA  - en
ID  - AMBP_2023__30_2_141_0
ER  - 
%0 Journal Article
%A Matthieu Josuat-Vergès
%A Philippe Nadeau
%T Koszulity of dual braid monoid algebras via cluster complexes
%J Annales mathématiques Blaise Pascal
%D 2023
%P 141-188
%V 30
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.420/
%R 10.5802/ambp.420
%G en
%F AMBP_2023__30_2_141_0
Matthieu Josuat-Vergès; Philippe Nadeau. Koszulity of dual braid monoid algebras via cluster complexes. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 2, pp. 141-188. doi : 10.5802/ambp.420. https://ambp.centre-mersenne.org/articles/10.5802/ambp.420/

[1] Marie Albenque; Philippe Nadeau Growth function for a class of monoids, 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009) (Discrete Mathematics and Theoretical Computer Science. Proceedings), The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS), 2009, pp. 25-38 | Zbl

[2] Drew Armstrong Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Am. Math. Soc., Volume 202 (2009) no. 949, p. x+159 | MR | Zbl

[3] Christos A. Athanasiadis On some enumerative aspects of generalized associahedra, Eur. J. Comb., Volume 28 (2007) no. 4, pp. 1208-1215 | DOI | MR

[4] Christos A. Athanasiadis; Thomas Brady; Jon McCammond; Colum Watt h-vectors of generalized associahedra and noncrossing partitions, Int. Math. Res. Not. (2006), 69705, 28 pages | DOI | MR

[5] Christos A. Athanasiadis; Thomas Brady; Colum Watt Shellability of noncrossing partition lattices, Proc. Am. Math. Soc., Volume 135 (2007) no. 4, pp. 939-949 | DOI | MR

[6] Kenneth Baclawski; Anders Björner Fixed points in partially ordered sets, Adv. Math., Volume 31 (1979), pp. 263-287 | DOI | MR | Zbl

[7] David Bessis The dual braid monoid, Ann. Sci. Éc. Norm. Supér., Volume 36 (2003) no. 5, pp. 647-683 | DOI | Numdam | MR

[8] David Bessis A dual braid monoid for the free group, J. Algebra, Volume 302 (2006) no. 1, pp. 55-69 | DOI | MR

[9] David Bessis Finite complex reflection arrangements are K(π,1), Ann. Math., Volume 181 (2015) no. 3, pp. 809-904 | DOI | MR | Zbl

[10] Philippe Biane Some properties of crossings and partitions, Discrete Math., Volume 175 (1997) no. 1-3, pp. 41-53 | DOI | MR

[11] Philippe Biane; Matthieu Josuat-Vergès Noncrossing partitions, Bruhat order and the cluster complex, Ann. Inst. Fourier, Volume 69 (2019) no. 5, pp. 2241-2289 | DOI | Numdam | MR | Zbl

[12] Joan Birman; Ki Hyoung Ko; Sang Jin Lee A new approach to the word and conjugacy problems in the braid groups, Adv. Math., Volume 139 (1998) no. 2, pp. 322-353 | DOI | MR | Zbl

[13] Thomas Brady; Colum Watt K(π,1)’s for Artin groups of finite type, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), Volume 94 (2002), pp. 225-250 | MR | Zbl

[14] Thomas Brady; Colum Watt Non-crossing partition lattices in finite real reflection groups, Trans. Am. Math. Soc., Volume 360 (2008) no. 4, pp. 1983-2005 | DOI | MR | Zbl

[15] Winfried Bruns; Jürgen Herzog Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, 1993, xii+403 pages | MR

[16] Roger W. Carter Conjugacy classes in the Weyl group, Compos. Math., Volume 25 (1972), pp. 1-59 | Numdam | MR

[17] Pierre Cartier; Dominique Foata Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Mathematics, 85, Springer, 1969, iv+88 pages | DOI

[18] Cesar Ceballos; Jean-Philippe Labbé; Christian Stump Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebr. Comb., Volume 39 (2014) no. 1, pp. 17-51 | DOI | MR

[19] Frédéric Chapoton Enumerative properties of generalized associahedra, Sémin. Lothar. Comb., Volume 51 (2004), B51b, 16 pages | MR | Zbl

[20] Frédéric Chapoton; Sergey Fomin; Andrei Zelevinsky Polytopal realizations of generalized associahedra, Can. Math. Bull., Volume 45 (2002) no. 4, pp. 537-566 (dedicated to Robert V. Moody) | DOI | MR

[21] Patrick Dehornoy; François Digne; Eddy Godelle; Daan Krammer; Jean Michel Foundations of Garside theory, EMS Tracts in Mathematics, 22, European Mathematical Society, 2015, xviii+691 pages (author name on title page: Daan Kramer) | DOI | MR

[22] N. È. Dobrinskaya Configuration spaces of labeled particles and finite Eilenberg–MacLane complexes, Proc. Steklov Inst. Math., Volume 252 (2006), pp. 30-46 | DOI | Zbl

[23] Matthew J. Dyer Hecke algebras and shellings of Bruhat intervals, Compos. Math., Volume 89 (1993) no. 1, pp. 91-115 | Numdam | MR | Zbl

[24] Zbigniew Fiedorowicz Classifying spaces of topological monoids and categories, Am. J. Math., Volume 106 (1984), pp. 301-350 | DOI | MR | Zbl

[25] Sergey Fomin; Andrei Zelevinsky Y-systems and generalized associahedra, Ann. Math., Volume 158 (2003) no. 3, pp. 977-1018 | DOI | MR

[26] Ralf Fröberg Koszul algebras, Advances in commutative ring theory (Fez, 1997) (Lecture Notes in Pure and Applied Mathematics), Volume 205, Marcel Dekker, 1999, pp. 337-350 | MR | Zbl

[27] Allen Hatcher Algebraic topology, Cambridge University Press, 2002, xii+544 pages | MR

[28] James E. Humphreys Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990, xii+204 pages | DOI | MR

[29] Colin Ingalls; Hugh Thomas Noncrossing partitions and representations of quivers, Compos. Math., Volume 145 (2009) no. 6, pp. 1533-1562 | DOI | MR

[30] Tadashi Ishibe; Kyoji Saito Zero loci of skew-growth functions for dual Artin monoids, J. Algebra, Volume 480 (2017), pp. 1-21 | DOI | MR

[31] Yuji Kobayashi Partial commutation, homology, and the Möbius inversion formula, Words, languages and combinatorics (Kyoto, 1990), World Scientific, 1992, pp. 288-298 | MR | Zbl

[32] Dmitry Kozlov Combinatorial algebraic topology, Algorithms and Computation in Mathematics, 21, Springer, 2008, xx+389 pages | DOI | MR

[33] Ulrich Krähmer Notes on Koszul algebras (2011) (https://vdoc.pub/download/notes-on-koszul-algebras-2iej1b1443f0)

[34] Daan Krammer Braid Groups (2005) (http://www.warwick.ac.uk/~masbal/MA4F2Braids/braids.pdf)

[35] Jean-Louis Loday; Bruno Vallette Algebraic operads, Grundlehren der Mathematischen Wissenschaften, 346, Springer, 2012, xxiv+634 pages | DOI

[36] Shahn Majid Algebras and Hopf algebras in braided categories, Advances in Hopf algebras (Chicago, IL, 1992) (Lecture Notes in Pure and Applied Mathematics), Volume 158, Marcel Dekker, 1994, pp. 55-105 | MR | Zbl

[37] Jon McCammond Noncrossing partitions in surprising locations, Am. Math. Mon., Volume 113 (2006) no. 7, pp. 598-610 | DOI | MR

[38] Jon McCammond; Robert Sulway Artin groups of Euclidean type, Invent. Math., Volume 210 (2017) no. 1, pp. 231-282 | DOI | MR | Zbl

[39] Alexander Milinski; Hans-Jürgen Schneider Pointed indecomposable Hopf algebras over Coxeter groups, New trends in Hopf algebra theory (La Falda, 1999) (Contemporary Mathematics), Volume 267, American Mathematical Society, 2000, pp. 215-236 | DOI | MR | Zbl

[40] Henri Mühle EL-shellability and noncrossing partitions associated with well-generated complex reflection groups, Eur. J. Comb., Volume 43 (2015), pp. 249-278 | DOI | MR

[41] Peter Orlik; Louis Solomon Combinatorics and topology of complements of hyperplanes, Invent. Math., Volume 56 (1980) no. 2, pp. 167-189 | DOI | MR | Zbl

[42] Viktoriya Ozornova Discrete Morse theory and a reformulation of the K(π,1)-conjecture, Commun. Algebra, Volume 45 (2017) no. 4, pp. 1760-1784 | DOI | MR | Zbl

[43] Giovanni Paolini; Mario Salvetti Proof of the K(π,1) conjecture for affine Artin groups, Invent. Math., Volume 224 (2021) no. 2, pp. 487-572 | DOI | MR

[44] Alexander Polishchuk; Leonid Positselski Quadratic algebras, University Lecture Series, 37, American Mathematical Society, 2005, xii+159 pages | DOI | MR

[45] Stewart B. Priddy Koszul resolutions, Trans. Am. Math. Soc., Volume 152 (1970), pp. 39-60 | DOI | MR | Zbl

[46] Nathan Reading Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Am. Math. Soc., Volume 359 (2007) no. 12, pp. 5931-5958 | DOI | MR | Zbl

[47] Nathan Reading; David E. Speyer Cambrian fans, J. Eur. Math. Soc., Volume 11 (2009) no. 2, pp. 407-447 | DOI | MR

[48] Mitsuhiro Takeuchi A survey on Nichols algebras, Algebraic structures and their representations (Contemporary Mathematics), Volume 376, American Mathematical Society, 2005, pp. 105-117 | DOI | MR | Zbl

[49] Michelle L. Wachs Poset topology: tools and applications, Geometric combinatorics (IAS/Park City Mathematics Series), Volume 13, American Mathematical Society, 2007, pp. 497-615 | DOI | MR | Zbl

[50] Yang Zhang Combinatorics of Milnor fibres of reflection arrangements, Ph. D. Thesis, University of Sidney (2020) https://ses.library.usyd.edu.au/handle/2123/22985?show=full#

[51] Günter M. Ziegler Lectures on polytopes, Graduate Texts in Mathematics, 152, Springer, 1995, x+370 pages | DOI | MR

Cité par Sources :